

Journal of Organometallic Chemistry 557 (1998) 227-230

Synthesis and molecular structure of *meso-*(ethylenebis-(2-(dimethylamino)-1-indenyl))zirconium dichloride

Hendrik J.G. Luttikhedde ^{a,*}, Reko Leino ^a, Markku J. Ahlgrén ^b, Tapani A. Pakkanen ^b, Jan H. Näsman ^a

^a Department of Polymer Technology, Åbo Akademi University, Porthansgatan 3-5, FIN-20500 Åbo, Finland ^b Department of Chemistry, University of Joensuu, PO Box 111, FIN-80101, Joensuu, Finland

Received 22 September 1997

Abstract

The preparation and molecular structure of *meso*-(ethylenebis(2-(dimethylamino)indenyl))zirconium dichloride (3) is reported. Predominant *meso* formation is observed when the ligand dilithium salt is reacted with $ZrCl_4$ in THF. Complex 3 crystallizes in a chiral C_1 symmetric staggered conformation (Ind ^ Ind = 23.1°) and reveals shortened hapto-nitrogen bond lengths, 1.456(11) and 1.399(13) Å, indicating extensive orbital overlap between the nitrogen and the hapto carbon atom. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Aminoindenyl; Meso; Metallocene

1. Introduction

Transition metal based homogeneous polymerization catalysts have gone through a remarkable development in recent years. Especially C_2 -symmetric *ansa*-metal-locene complexes have been employed in isospecific polymerization of propylene [1] and have been exploited as stereoselective catalysts or reagents for a wide variety of other reactions [2]. Until recently, electronic alteration of group IV metallocene complexes by direct hetero atom substitution on the η^5 -rings has remained relatively rare [3–7]. This paper continues our recent studies on hetero atom functionalized bis(indenyl) *ansa-*zirconocenes [3]d[4] and describes the synthesis and molecular structure of *meso*-(ethylenebis(2-(dimethyl-amino)indenyl))zirconium dichloride.

2. Results and discussion

Double deprotonation of ethylenebis(2-(dimethylamino)indene) (1) with two equivalents of *n*-butyllithium and subsequent reaction of the dilithium salt with $ZrCl_4$ in toluene yields *rac*- (2) and *meso*- (3) (ethylenebis(2-(dimethylamino)indenyl))zirconium dichloride in a 1:1 ratio [3]d. When, however, the same reaction is performed in THF, a *rac:meso* ratio of 3:7 is obtained (Scheme 1).

The diastereomers can be separated by fractional crystallization from toluene. Surprisingly an opposite stereochemical outcome has been observed for the dimethylsilylene-bridged analogue, which in toluene yielded rac:meso = 7:2 and in THF rac:meso = 1:1 [3]b, c.

In solution **3** gives a highly symmetric ¹H-NMR spectrum indicating rapid conformational interconversion. The bridge protons give a characteristic AA'BB' spin pattern [8]. The signal from the H_b-proton of **3** (5.85 ppm) is shielded considerably compared to the corresponding value for *meso*-Et(Ind)₂ZrCl₂ (6.70 ppm) [9]a, indicating increased electron density in the C₅ ring.

^{*} Corresponding author. Tel.: + 358 2 2154717, fax: + 358 2 215866; e-mail: hluttikh@abo.fi

Fig. 1. Molecular structure of 3 (ORTEP view, ellipsoids at 40% probability level).

The molecular structure of **3** (Fig. 1) shows that this complex crystallizes in a chiral C_1 symmetric staggered conformation (Ind ^ Ind = 23.1°) as observed previously for *meso* ethylene-bridged bis(indenyl) [9] and bis(te-trahydroindenyl) [10] zirconium dichlorides. The interatomic distances and angles (Table 1) are unremarkable and well within the range observed for other crystallographically determined molecular structures of *meso* ethylene-bridged bis(indenyl) zirconium dichlorides (Table 2). In fact, the substitutions presented in Table 2 do not alter any of the relevant geometrical parameters.

The R,S *meso* stereoisomer, reported in Fig. 1, has a δ conformation of the Zr–C(11), C(1), C(2), C(21) 'metallacycle'. The hapto-nitrogen bond lengths, C(12)–N(12) = 1.456(11) and C(22)–N(22) = 1.399(13) Å are dissimilar and comparable to those found in the pyrrolidino substituted complex *meso*-Me₂Si[(2-C₄H₈N)Ind]₂ZrCl₂ in which this dissimilarity has been explained by crystal packing effects [3]b. Steric hin-

drance forces the dimethylamino substituents out from the η^5 -plane [11] which leads to an elongation of the C-N bond lengths compared to the unperturbed non bridged analogue [3]b-d.

Table 1				
Selected interatomic	distances	(Å) and	angles	(°) for 3

Zr–Cl(1)	2.418(3)	Zr-Cl(2)	2.462(3)
Zr-C(11)	2.471(8)	Zr-C(21)	2.453(10)
Zr-C(12)	2.548(9)	Zr-C(22)	2.610(11)
Zr-C(13)	2.519(10)	Zr-C(23)	2.560(11)
Zr-C(14)	2.575(10)	Zr-C(24)	2.571(10)
Zr-C(15)	2.552(9)	Zr-C(25)	2.497(9)
Zr–Ce(1) ^a	2.228	Zr–Ce(2) ^a	2.233
Cl(1)– Zr – $Cl(2)$	96.89(11)	Ce(1)–Zr–Ce(2) ^a	127.5

^a Ce(1) and Ce(2) denote the centroids of the five-membered portions of the indene rings, with the lowest and highest crystallographic numbering, respectively.

meso-Zirconocene	Zr-C(min-max) (Å)	Zr–Cl (Å) ^a	Zr–Cl (Å)	Cl–Zr–Cl (°)	Ce–Zr–Ce (°) ^b	Ref
Et(2-Me ₂ NInd) ₂ ZrCl ₂	2.453-2.610	2.418	2.462	96.89	127.5	This work
Et(1-t-BuMe ₂ SiOInd) ₂ ZrCl ₂	2.444-2.661	2.426	2.435	96.19	126.4	4c
Et(4,7-Me ₂ Ind) ₂ ZrCl ₂	2.462 - 2.602	2.410	2.450	95.91	123.8	9b
Et(Ind) ₂ ZrCl ₂	2.470-2.646	2.397	2.455	97.62	126.2	9a
$Et(IndH_4)_2ZrCl_2$	2.436 - 2.602	2.420	2.457	98.65	125.2	10

Comparison of selected intramolecular distances and angles for meso ansa-zirconocenes

^a Chlorine atom inside the bis-indenyl framework (see Fig. 1).

^b Centroid-zirconium-centroid angle.

Table 2

Though similar lithium–nitrogen coordination would be expected for both ethylene- and silylene-bridged ligand salts, opposite *rac:meso* ratios of these reactions show, however, that in this case the stereochemical outcome of heteroatom functionalized *ansa*-metallocene formation is unpredictable.

3. Experimental section

Reactions with organometallic compounds were carried out under argon in Schlenk-type glassware. Solvents were dried and distilled under argon prior to use. Ethylenebis(2-(dimethylamino)indene), as a mixture of three double bond isomers, was prepared as described previously [3]d, *n*-butyllithium and zirconium tetrachloride (Aldrich) were used without further purification. NMR spectra were recorded with a JEOL JNM-LA400 (¹H, 400 MHz; ¹³C, 100.6 MHz) NMR spectrometer. Direct inlet ionization mass spectra (EIMS) were obtained at 70 eV on a Varian VG-7070E mass spectrometer.

3.1. Synthesis of meso-(ethylenebis(2-(dimethylamino)indenyl))zirconium dichloride (3)

To a solution of ethylenebis(2-N,N-(dimethylamino)indene) (4.32 g, 12.5 mmol) in THF (40 ml) was added dropwise n-butyllithium (10.0 ml of a 2.5 M solution in hexanes, 25.0 mmol) at -40° C. The reaction mixture was allowed to warm to room temperature and stirred for 1 h. This solution was added dropwise to a solution of ZrCl₄ (2.84 g, 12.2 mmol) in THF (80 ml) at 0°C and the reaction mixture was stirred overnight at room temperature. The orange suspension was evaporated to dryness and extracted with CH₂Cl₂ (100 ml) to remove lithium chloride. Evaporation and crystallization of the residue from toluene (40 ml) at 4°C gave a mixture of 2 and 3 (1.95 g, 3.9 mmol, rac:meso ~ 2:1). Further crystallization of the mother liquor at -30° C gave pure 3 (2.38 g, 4.7 mmol, 38%) as yellow crystals. Crystals suitable for the X-ray study were obtained by cooling a solution of 3 in CH₂Cl₂hexane (1:1 v/v) to -30° C. ¹H-NMR (400 MHz, CD₂Cl₂): δ 7.45 (dd, ³*J* = 8.7 Hz, ⁴*J* = 0.6 Hz, 2H), 7.16 (dt, ³*J* = 8.4 Hz, ⁴*J* = 1.0 Hz, 2H), 7.02 (ddd, ³*J* = 8.4, 6.8 Hz, ⁴*J* = 1.0 Hz, 2H), 6.85 (ddd, ³*J* = 8.6, 6.9 Hz, ⁴*J* = 1.1 Hz, 2H), 5.85 (d, ⁴*J* = 0.6 Hz, 2H), 3.98–3.81 (m, AA'BB', 4H), 3.02 (s, 12H). ¹³C-NMR (400 MHz, CD₂Cl₂): δ 150.16, 127.46, 124.95, 124.56, 123.57, 122.99, 121.72, 104.94, 94.64, 42.84, 28.53. In the mass spectrum of **3**, parent ions of the composition C₂₄H₂₆N₂ZrCl₂⁺ were obseved in the appropriate isotope ratios at *m*/*e* = 502–510. The base peak corresponded to C₁₂H₁₂N⁺, at *m*/*e* = 171.

3.2. Crystal structure determination

Intensity measurements for X-ray structure analysis were made on a Nicolet R3m diffractometer using M_o-K_{α} radiation. Three intensity check reflections showed crystal decay of 8% for **3** at the end of data collection, although the crystal was sealed in a glass capillary. The data set was scaled and corrected for Lorentz and polarization factors. The crystal structure was determined by direct methods with SHELX86 [12] and subsequent Fourier synthesis with SHELXL93 [13]. The hydrogens were placed at calculated positions with

Table 3 Crystallographic data for **3**

Empirical formula	$C_{24}H_{26}Cl_2N_2Zr \cdot \frac{1}{4}CH_2Cl_2$
Formula weight	525.85
Crystal system	Tetragonal
Space group	<i>P</i> -42 ₁ c No. 114
a (Å)	23.196(3)
b (Å)	23.196(3)
$c(\dot{A})$	8.570(2)
Z	8
V (Å ³)	4611.1(14)
$\mu ({\rm mm}^{-1})$	0.781
$D_{c} (Mg m^{-3})$	1.515
F (000)	2148
Crystal dimensions (mm)	$0.45 \times 0.20 \times 0.15$
2θ limits (°)	2.48-25.00
Scan mode	ω
Reflections collected	4477
Independent reflections	2285 [$R(int) = 0.0726$]
Final R indices $[I > 2\sigma(I)]$ (%)	$R = 4.59; R_{w} = 7.39$
$(\Delta \rho)_{\rm max}/(\Delta \rho)_{\rm min}$	0.549 ± 0.417

Table 4

Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement coefficients $(\mathring{A}^2 \times 10^3)$ for 3

Atom	x	у	Ζ	U_{eq}
Zr	4985(1)	2470(1)	2629(1)	33(1)
Cl(1)	4619(1)	2078(1)	5048(3)	51(1)
Cl(2)	5578(1)	3238(1)	3795(4)	71(1)
N(12)	4922(4)	3264(4)	-787(10)	49(3)
N(22)	6129(4)	2561(4)	-63(12)	64(3)
C(1)	4330(4)	2050(4)	-759(10)	39(3)
C(2)	4953(5)	1897(4)	-1087(10)	45(3)
C(11)	4289(4)	2517(5)	449(9)	33(2)
C(12)	4538(4)	3069(5)	449(11)	37(3)
C(13)	4421(5)	3353(5)	1850(12)	44(3)
C(14)	4019(4)	3018(4)	2695(10)	32(3)
C(15)	3926(4)	2503(5)	1826(9)	30(2)
C(16)	3515(4)	2101(4)	2367(11)	38(3)
C(17)	3213(4)	2219(5)	3690(13)	51(3)
C(18)	3298(5)	2744(5)	4508(12)	51(3)
C(19)	3701(5)	3134(5)	4076(12)	52(3)
C(21)	5296(5)	1866(4)	436(12)	36(3)
C(22)	5830(5)	2150(5)	816(14)	51(3)
C(23)	5977(5)	1997(5)	2362(16)	56(4)
C(24)	5611(4)	1560(5)	2864(13)	40(3)
C(25)	5184(4)	1470(4)	1695(11)	34(3)
C(26)	4755(4)	1042(4)	1885(11)	40(3)
C(27)	4778(5)	703(4)	3221(13)	47(3)
C(28)	5201(5)	784(5)	4353(12)	48(3)
C(29)	5613(5)	1192(5)	4193(13)	51(3)
C(211)	5261(5)	3760(5)	-409(14)	71(4)
C(212)	4630(5)	3333(5)	-2299(10)	55(3)
C(221)	6619(5)	2853(6)	651(15)	97(6)
C(222)	6177(5)	2469(6)	-1745(14)	96(5)

 $U_{\rm eq} = 1/3 \ \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j \times 10^4.$

fixed isotropic thermal parameters (1.2 U_{eq} of the corresponding C atom). The crystallographic data and atomic coordinates for **3** are collected in Tables 3 and 4, respectively.

Acknowledgements

Financial support from the Finnish Technology Development Center (TEKES) is gratefully acknowledged. The authors wish to thank Mrs P. Pennanen (NMR spectra), Mr C.-P. Askolin (Perch calculations) and Mr M. Reunanen (EIMS) for their assistance in characterizing the products.

References

(a) P.C. Möhring, N.J.Coville, J. Organomet. Chem. 479 (1994)
(b) K.B. Sinclair, R.B. Wilson, Chem. Ind. 20 (1994) 257; (c)

H.H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R.M. Waymouth, Angew. Chem. Int. Ed. Engl. 34 (1995) 1143; (d) M. Bochmann, J. Chem. Soc. Dalton Trans. (1996) 255; (e) W. Kaminsky, M. Arndt, Adv. Polym. Sci. 127 (1997) 143.

- [2] (a) A.H. Hoveyda, J.P. Morken, Angew. Chem. Int. Engl. Ed. 35 (1996) 1262; (b) G.M. Diamond, R.F. Jordan, J.F. Petersen, J. Am. Chem. Soc. 118 (1996) 8024 and references therein.
- [3] Nitrogen substituted, see: (a) K.-P. Stahl, G. Boche, W. Massa, J. Organomet. Chem. 227 (1984) 113; (b) E. Barsties, Ph.D. Thesis, Universität Konstanz, 1995; (c) E. Barsties, S. Schaible, M.-H. Prosenc, U. Rief, W. Röll, O. Weyand, B. Dorer, H.H. Brintzinger, J. Organomet. Chem. 520 (1996) 63; (d) H.J.G. Luttikhedde, R.P. Leino, C.-E. Wilén, J.H. Näsman, M.J. Ahlgrén, T.A. Pakkanen, Organometallics 15 (1996) 3092; (e) H. Plenio, D. Burth, J. Organomet. Chem. 519 (1996) 269.
- [4] Oxygen substituted, see: (a) R. Leino, H.J.G. Luttikhedde, C.-E. Wilén, R. Sillanpää; J.H. Näsman, Organometallics 15 (1996) 2450; (b) R. Leino, H.J.G. Luttikhedde, P. Lehmus, C.-E. Wilén, R. Sjöholm, A. Lehtonen, J.V. Seppälä, J.H. Näsman, Macromolecules 30 (1997) 3477; (c) R. Leino, H.J.G. Luttikhedde, A. Lehtonen, P. Ekholm, J.H. Näsman, submitted for publication in Organometallics. (d) H. Plenio, A. Warnecke, J. Organomet. Chem. 544 (1997) 133. (e) R. Leino, H.J.G. Luttikhedde, P. Lehmus, C.-E. Wilén, R. Sjöholm, A. Lehtonen, J.V. Seppälä, J.H. Näsman, J. Organomet. Chem., in press. (f) H.J.G. Luttikhedde, R. Leino, A. Lehtonen, J.H. Näsman, J. Organomet. Chem, in press. (g) R. Leino, H.J.G. Luttikhedde, A. Lehtonen, R. Sillanpää, A. Penninkangas, J. Strandén, J. Mattinen, J.H. Näsman, J. Organomet. Chem., in press.
- [5] Boron substituted, see: (a) M.T. Reetz, H. Brümmer, M. Kessler, J. Kuhnigk, Chimia 49 (1995) 501; (b) K.A. Rufanov, V.V. Kotov, N.B. Kazennova, D.A. Lemenovskii, E.V. Avtomov, J. Lorberth, J. Organomet. Chem. 525 (1996) 287; (c) S.A. Larkin, J.T. Golden, P.J. Shapiro, G.P.A. Yap, D. Ming Jin Foo, A.L. Rheingold, Organometallics 15 (1996) 2393; (d) K. Rufanov, E. Avtomov, N. Kazennova, V. Kotov, A. Khvorost, D. Lemenovskii, J. Lorberth, J. Organomet. Chem. 536-537 (1997) 361.
- [6] Sulfur substituted, see: R. Broussier, C. Bourdon, O. Blacque, A. Vallat, M.M. Kubicki, B. Gautheron, J. Organomet. Chem. 538 (1997) 83.
- [7] Arsenic substituted, see: ref. 5(d).
- [8] Coupling constants were calculated by the iterative Perch program, see: R. Laatikainen, M. Niemitz, U. Weber, J. Sundelin, T. Hassinen and J. Vepsäläinen, J. Magn. Reson., Ser. A 120 (1996) 1. J_{AB} = J_{A'B'} = -14.7 Hz, J_{AA'} = 6.6 Hz, J_{BB'} = 6.6 Hz and J_{AB'} = J_{A'B} = 7.4 Hz. For the previously reported in ref. 3d racemic analogue J_{AB} = J_{A'B} = -14.2 Hz, J_{AA'} = 1.1 Hz, J_{BB'} = 14.7 Hz and J_{AB'} = J_{A'B} = 4.8 Hz.
- [9] (a) F. Piemontesi, I. Camurati, L. Resconi, D. Balboni, M. Moret, R. Zeigler, N. Piccolrazzavi, Organometallics 14 (1995) 1256; (b) L. Resconi, F. Piemontesi, I. Camurati, D. Balboni, A. Sironi, M. Moret, H. Rychlicki, R. Zeigler, Organometallics 15 (1996) 5046.
- [10] S. Collins, W.J. Gauthier, D.A. Holden, B.A. Kuntz, N.J. Taylor, D.G. Ward, Organometallics 10 (1991) 2061.
- [11] (a) Selected torsion angles (°) for 3: C(211)-N(12)-C(12)-C(13) = 8.3(15), C(212)-N(12)-C(12)-C(11) = 67.3(13), C(221)-N(22)-C(22)-C(23) = -0.3(18), C(222)-N(22)-C(22)-C(22)-C(22) = -42.5(17).
- [12] G.M. Sheldrick, Acta Crystallogr. A46 (1990) 467.
- [13] G.M. Sheldrick, SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1993.